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Abstract: The efficient preparation of electromagnetic wave absorbing materials with low density and
excellent electromagnetic wave absorption remains a considerable challenge. In this study, reduced
graphene oxide (RGO) wrapped Fe3O4 nanoparticles (NPs) were synthesized based on one-step
reaction by the reduction of graphene oxide (GO), and the generation of super-fine Fe3O4 NPs
was achieved. The phase structure, chemical composition, micromorphology, and magnetism were
characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), scanning electron
microscope (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer
(VSM), respectively. The electromagnetic characteristics were evaluated on a vector network analyzer
by the coaxial line method. The results showed that super-fine Fe3O4 NPs with an average size of 6.18
nm are densely distributed on the surface of graphenes. The RGO/Fe3O4 nanocomposites exhibited
excellent microwave absorption properties with a minimum reflection loss (RL) of up to −55.71 dB
at 6.78 GHz at 3.5 mm thickness and the highest effective absorption bandwidth with RL values
exceeding −10 dB is 4.76 GHz between 13.24 and 18 GHz at 1.7 mm thickness. This work provides a
concise method for the development of RGO supported super dense Fe3O4 nanocomposites for high
performance electromagnetic absorption applications.

Keywords: RGO/Fe3O4 nanocomposite; micromorphology; electromagnetic characteristics;
microwave absorption properties

1. Introduction

Due to the rapid development of electromagnetic wave detection technology, high performance
microwave absorption materials have attracted more and more attention in the civil and military
industries [1–3]. Ferrites have been widely used as electromagnetic wave (EW) absorbing agents due
to their high saturation magnetization, low technological threshold, and cost [4,5]. Unfortunately,
traditional ferrite absorbers have revealed shortcomings such as easy aggregation, high weight, and
an inefficient EW absorption capability in practical applications. In general, these shortcomings are
confined to the effects of magnetic loss when attenuating EW signals for Fe3O4 nanoparticles (NPs)
due to their high resistivity, but a single loss mechanism is not beneficial for the achievement of ideal
EW absorption performance. Thus, it is necessary to introduce some other types of electromagnetic
loss mechanisms to alleviate this dilemma [6–8].
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Recently, graphene nanosheets (GNs) have gained a lot of attention as microwave absorbers by
virtue of their excellent conductivity and light weight [9–11]. Researchers have found that reduced
graphene oxide (RGO) has attractive microwave absorbing ability owning to its high dielectric loss.
Nevertheless, single RGOs could not achieve ideal microwave absorption performance due to their
high permittivity and low permeability, which would lead to unfavorable electromagnetic impedance
matching. In order to mitigate the dilemma, a lot of research has been conducted by combining RGO
with magnetic components, such as FeCo [12], Ni [13], NiCoP [14], CoFe2O4 [15], and Fe3O4 [16].
For example, Xu et al. synthesized RGO/Ni hybrids with different mass ratios to obtain an optimal
reflection loss value of −39.03 dB at 13 GHz [13]. Xue et al. synthesized NiCoP/RGO nanocomposites
by one-pot reaction in order to improve dielectric and magnetic loss and thus enhance the reflection
loss [14]. Chu et al. synthesized α-Fe2O3/RGO with a maximum reflection loss of up to −42.8 dB at a
thickness of 1.8 mm [16]. Therefore, decorating magnetic metal NPs onto the large surface of GNs is a
flexible strategy for improving microwave absorption properties by combining dielectric and magnetic
loss mechanisms into a micro-nano composite structure, which can also improve their aggregation
resistance and reduce their weight [17–26].

Herein, we report an easy and efficient method for the synthesis of graphene wrapped super dense
Fe3O4 NPs via one-step reaction in order to enhance their microwave absorption properties. The phase
structure, chemical composition, micromorphology, and magnetism of RGO/Fe3O4 nanocomposites
are investigated, and the electromagnetic parameters and microwave absorption performance of
RGO/Fe3O4 is evaluated.

2. Materials and Methods

All chemical reagents including ferric chloride (FeCl3), diethylene glycol (DEG), potassium
permanganate (KMnO4), hydrogen peroxide (H2O2), concentrated sulfuric acid (H2SO4), and NaOH
were purchased from Sinopharm Chemical Reagent Company (Shanghai, China). Graphite power was
supplied by Yanhai Carbon Material Company (Qingdao, China).

Graphene oxide (GO) was synthesized using modified Hummers method [27]. The source materials
(2 g of graphene powder, 60 mL of concentrated H2SO4, and 7 g of KMnO4) were successively put into a
three-necked flask while undergoing mechanical stirring in an ice water bath. The mixture was heated
to 35 ◦C while undergoing mechanical stirring for 3 h, and then diluted with distilled water (100 mL)
dropwise. Afterwards, the mixture was heated to 90 ◦C while undergoing strong mechanical stirring
for 30 min. Finally, distilled water (180 mL) and H2O2 (20 mL, 30%) were added dropwise and then
the mixture was kept undisturbed for 24 h. The obtained precipitation was washed with HCl solution
and distilled water through centrifugation until the decantate became neutral. Finally, the resulting
graphene oxides (GOs) were obtained by ultrasonic treatment in water followed by freeze-drying.

The as-obtained GOs were firstly dissolved in 70 mL DEG, and 400 mg FeCl3 was added while
the mixture was being stirred, then the suspension was heated to 220 ◦C while undergoing continuous
stirring for 1 h with the protection of argon. Afterwards, NaOH solution was quickly poured into the
suspension while undergoing stirring for another 0.5 h at 220 ◦C. Finally, the reaction system was cooled
down to room temperature and the obtained RGO/Fe3O4 was separated and purified by centrifugation,
washing, and drying. For comparison, pure Fe3O4 NPs was prepared using similar methods.

The chemical composition was characterized by X-ray photoelectron spectroscopy (XPS) performed
on a Thermo ESCALAB 250 (Thermo Fisher Scientific Inc., Waltham, MA, USA) with Al-Kα radiation.
The micromorphology was observed by transmission electron microscopy (TEM) conducted on a
Tecna G2 F20 S-TWIN electron microscope (FEI Inc., Hillsborough, OR, USA) operated at 200 kV.
The hysteresis loop was recorded on a SQUID-VSM vibrating sample magnetometer (Quantum Design
Inc., San Diego, CA, USA). Electromagnetic parameters, including relative complex permittivity and
permeability, were measured in the frequency range of 1–18 GHz using the coaxial line method on an
AV3629D Vector Network Analyzer (CETI Co., Qingdao, China) by mixing the samples with paraffin
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wax (weight ratio of 1:1) and pressing them into a standard cylindrical shape mold with an inner
diameter of 3 mm, an outer diameter of 7 mm, and a thickness of 3 mm.

3. Results and Discussion

3.1. Chemical Composition and Morphology

The chemical composition of the RGO/Fe3O4 nanocomposite was identified by XPS as shown
in Figure 1. Figure 1a shows the XPS full spectrum of RGO/Fe3O4. It can be observed that the peaks
located at around 56, 285, 532, and 711.3 eV belong to Fe3p, C1s, O1s and Fe2p, respectively, which
indicates that RGO/Fe3O4 consists of three major elements including C, O and Fe. In the Fe2p high
resolution XPS spectra shown in Figure 1b, the peaks located at 711 and 723 eV are assigned to Fe 2p3/2

and Fe 2p1/2, respectively, which is consistent with the characteristic peaks of Fe3O4.
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Figure 1. X-ray photoelectron spectroscope (XPS) spectra of reduced graphene oxide (RGO)/Fe3O4

nanocomposite: (a) full spectrum, (b) Fe2p high resolution spectrum.

Figure 2 shows transmission electron microscopy (TEM) images of RGO/Fe3O4 nanocomposite.
It can be seen from Figure 2a,b that the wrinkled surface of graphene nanosheets, which are capable
of supplying a large loading area for NP growth, are homogeneously decorated with super dense
spherical Fe3O4 NPs. The tiny Fe3O4 NPs, with an average size of 6.18 nm, are well distributed on the
surface of the graphenes. In the loading process, GOs were employed as a flexible substrate for the
in situ anchoring of Fe3+ and its growth into Fe3O4 NPs, so they played a confinement function to
prevent the Fe3O4 NPs from detaching and aggregating. In the HRTEM image shown in Figure 2c, the
interplanar distance of the NPs is 0.25 nm, which is in accordance with the lattice spacing of the (311)
plane of cubic magnetite Fe3O4, further confirming the formation of Fe3O4 nanocrystals on the surface
of RGO inferred from the XPS results.
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Figure 2. (a,b) TEM and (c) HRTEM images of RGO/Fe3O4 nanocomposite.

3.2. Magnetic Properties

Figure 3a shows the hysteresis loops of different samples collected by a magnetometer at room
temperature. The saturation magnetization (Ms) value of the RGO/Fe3O4, RGO, and Fe3O4 NPs are 36,
0.06, and 59 emu/g, and the corresponding coercivity (Hc) values are 25, 0, and 25 Oe, respectively.
It can be observed that the Ms values for Fe3O4 NPs are higher than those of RGO/Fe3O4 and RGOs,
indicating that the magnetism of RGO/Fe3O4 is introduced by loading magnetic Fe3O4 NPs onto
the surface of nonmagnetic RGOs. Meanwhile, the Hc values of RGO/Fe3O4 and Fe3O4 NPs are
the same, suggesting that the loading process has no effect on the intrinsic magnetic properties of
Fe3O4 NPs. To further illustrate the magnetic properties, the RGO/Fe3O4 were dispersed in an ethanol
solution (Figure 3b), which has favorable dispersibility and stability. After being attracted by a magnet
(Figure 3c), the RGO/Fe3O4 dispersed in alcohol were quickly gathered together and attached to the
bottle wall. Therefore, the graphenes were successfully magnetized by the loading of super dense
Fe3O4 NPs.
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Figure 3. (a) Hysteresis loops of different samples measured at 298 K, (b) RGO/Fe3O4 nanocomposites
dispersed in alcohol, and (c) separated by a magnet.

3.3. Electromagnetic Characteristics

In order to find out the essential reasons for microwave absorption mechanisms, the electromagnetic
parameters, including the complex permittivity and permeability of Fe3O4 NPs, RGO, and RGO/Fe3O4

nanocomposites, were measured. The real parts (ε′ and µ′) symbolize the storage capacity of electric
and magnetic energy, and the imaginary parts (ε” and µ”) symbolize the energy loss, respectively.
The dielectric loss (tanδε = ε”/ε′) and magnetic loss tangent (tanδµ = µ”/µ′) give the balance between
the real and imaginary parts in an absorbing structure.

Figure 4a–c show the frequency dependence of the real part (ε′) and the imaginary part (ε”) of
complex permittivity, and the dielectric loss tangent (tanδε) for different samples. It is clear that the
ε′, ε”, and tanδε values for both RGO/Fe3O4 and RGO are larger than those of Fe3O4 NPs. The ε′ of
RGO/Fe3O4 declines from 13.69 to 6.98 with increasing frequency, and the ε” remains relatively stable,
changing from 5.55 to 3.04. The tanδε curve also exhibits a moderate growth trend ranging from 0.33 to
0.65 with some fluctuation, particularly in the high frequency region. Compared with pure RGOs, the
RGO/Fe3O4 have a similar tendency in ε′, but it is slightly lower in ε” and tanδε. The enhanced ε′,
ε”, and tanδε of RGO/Fe3O4 is attributed to multiple dielectric loss behaviors derived from dielectric
RGOs and magnetic Fe3O4 NPs. Firstly, the RGOs with high electric conductivity can form conducting
networks, which is in favor of dielectric loss, thereby playing a main role in the substantial increase in
ε′, ε”, and tanδε values. From the ε” versus ε′ plot of the RGO/Fe3O4 (Figure 4d), it can be observed
that there are multi-arcs for RGO/Fe3O4 and RGO, while there are no obvious arcs with increasing
frequency for Fe3O4 NPs, indicating that debye dipolar relaxation is the main dielectric loss mechanism
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for RGO based nanostructure. In addition, the introduction of Fe3O4 NPs would create defects on the
RGO surface, which would act as polarization centers for increasing dielectric loss. Secondly, although
the sole Fe3O4 NPs with ε” and tanδε approaching zero have hardly any dielectric loss, loading Fe3O4

NPs onto the surface of RGOs can introduce extra dielectric polarization behaviors. The interfacial
polarization might be strengthened by a multi-interface between Fe3O4 NPs and graphenes, and
the different electric potential between the two would induce charge accumulation at both ends,
thus enhancing the space-charge polarization. The super-tiny Fe3O4 NPs have unsaturated bonds,
which can serve as dipoles, thus the dipole polarization is enhanced [28]. The above mentioned
polarization processes are beneficial for the improvement of dielectric loss and for the better dissipation
of microwave energy.
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nanocomposites: (a) real (ε′) and (b) imaginary (ε”) parts of complex permittivity; (c) dielectric
loss tangent (tanδε); (d) Cole–Cole semicircles (ε” vs. ε′); (e) real (µ′) and (f) imaginary (µ”) parts of
complex permeability; (g) magnetic loss tangent (tanδµ); and (h) µ”(µ′)−2f−1 vs. f.

Figure 4e–g show the real (µ′) and imaginary (µ”) parts of the relative complex permeability, and
the magnetic loss (tanδµ) for the different samples. It is seen that the µ′ values for RGO/Fe3O4 and
Fe3O4 NPs sharply decrease initially and then become relatively stabilized with some fluctuation as the
frequency increases. The µ” and tanδµ for Fe3O4 NPs have obvious resonance peaks at 2–6 GHz, while
there is a decreasing trend with increasing frequency in the µ” and tanδµ curve for RGO/Fe3O4, which
are favorable for enhancing magnetic loss at low frequencies [29]. The multiple resonance peaks are
mainly attributed to natural resonance derived from magnetic Fe3O4 NPs. When the spherical Fe3O4

NPs are smaller, the anisortropy constant is higher, and the natural resonance is stronger. Meanwhile,
exchange resonance may also contribute to magnetic loss by a small amount and to the anisotropy of
magnetic NPs. In addition, the µ”(µ′)−2ƒ−1 values have obvious fluctuations at 1–6 GHz but remain
relatively stable subsequently (Figure 4h), indicating that the eddy-current loss may come into action
after 6 GHz.

3.4. Microwave Absorption Properties

Figure 5 displays the changes in reflection loss (RL) versus frequency for the samples at different
thicknesses. Figure 5a shows that the absorption performance of Fe3O4 NPs is so poor that the minimum
RL is merely −4.41 dB at 13.07 GHz at a thickness of 3.3 mm. For RGO, shown in Figure 5b, the
absorption performance gets better, with the minimum RL increasing to −26.87 dB at a thickness of
3.9 mm and shifting to a lower frequency of 4.31 GHz. It is implied from Figure 5c that the incorporation
of RGOs can shift the minimum RL of Fe3O4 NPs to a lower frequency region with enhanced microwave
absorption and an enlarged effective bandwidth. The reflection loss of RGO/Fe3O4 nanocomposites is
greatly enhanced, with the minimum RL value reaching up to −55.71 dB at 6.78 GHz with a thickness of
3.5 mm, and the highest effective absorption bandwidth with RL values lower than −10 dB is 4.76 GHz
between 13.24 and 18 GHz at a thickness of 1.7 mm (Figure 5d). For comparison, the microwave
absorption properties of dielectric/magnetic nanocomposites studied in similar works are displayed
in Table 1.
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Figure 5. Reflection loss (RL) curves and 3D representation of (a) Fe3O4 NPs, (b) RGO, and (c)
RGO/Fe3O4 with different thicknesses. (d) The RGO/Fe3O4 sample achieves an effective absorption
bandwidth of 4.76 GHz at a thickness of 1.7 mm and reaches the maximum RL value of −55.71 dB
(6.78 GHz) at a thickness of 3.5 mm.
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Based on the above analysis, the enhanced microwave absorption properties of RGO/Fe3O4

nanocomposite can be attributed to multiple dielectric and magnetic loss mechanisms illustrated in
Figure 6. The multi-interface introduced by super dense Fe3O4 NPs brought about extra polarization
behaviors and magnetic loss, such as interfacial polarization, dipole polarization, space-charge
polarization, eddy current loss, debye dipolar relaxation, natural resonance, and exchange resonance.
All these processes improve the microwave absorption properties.

Table 1. Comparison of microwave absorption properties in this work and other representative works.

Absorber Loading Ratio
(wt%) RLmin (dB) Effective Bandwidth (GHz)

(RL < −10dB)
Thickness

(mm) Refs

RGO/Ni 50 −39.03 4.3 2.0 [13]
RGO/NiCoP 50 −17.84 3.5 1.5 [14]

Fe3O4/GO/CNT 30 −37.3 2.2 5 [30]
G/BaFe12O19/CoFe2O4 50 −32.4 3.0 [31]

Fe3O4/CNT 50 −20.1 1.4 3.5 [32]
RGO/CoFe2O4 60 −39.0 4.7 2.0 [15]

RGO/matrimony vine-like Fe3O4 50 −42.8 4.6 1.8 [22]
RGO/Fe3O4 50 −55.71 4.76 1.7 This work
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4. Conclusions

In summary, we have successfully synthesized RGO wrapped super dense Fe3O4 NPs via one-step
reaction. The magnetic Fe3O4 NPs with an average size of 6.18 nm are well distributed on the
surface of the graphenes. The RGO/Fe3O4 nanocomposites have shown excellent electromagnetic wave
absorption properties. The minimum RL reaches up to −55.71 dB at 6.78 GHz at 3.5 mm thickness.
The highest effective absorption bandwidth is 4.76 GHz between 13.24 and 18 GHz at 1.7 mm thickness.
The multi-interface introduced by super dense Fe3O4 NPs brought about extra polarization behaviors
and magnetic loss, both of which improved the microwave absorption properties. This work provides a
concise way to develop graphene supported super dense Fe3O4 nanocomposites for high performance
electromagnetic absorption applications.
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